Application of Data Mining to Predict Car Sales Using K-Means Clustering Method
DOI:
https://doi.org/10.62181/nb8vt960Keywords:
Data Mining, Car Sales Prediction, K-Means Clustering MethodAbstract
The automotive industry is one of the key sectors in the economy. Accurate car sales prediction is crucial for automotive businesses to develop effective marketing and production strategies. Data mining, with its various techniques, offers solutions to assist automotive companies in predicting car sales. One popular data mining technique for predicting car sales is K-Means Clustering. This technique groups car sales data based on characteristics such as car model, price, sales region, and other factors. The clustering results can be used to identify sales patterns and trends, which can then be used to predict future sales. This paper discusses the application of K-Means Clustering for car sales prediction. It explains the steps involved in applying K-Means Clustering, its advantages and disadvantages, and provides an example of its application.
References
Anggriawan, I., & Gunawan, W. (2022). Implementation of Data Mining Using K-Means Algorithm for Bicycle Sales Prediction. ILKOM Jurnal Ilmiah, 14(3), 284–293. https://doi.org/10.33096/ilkom.v14i3.1291.284-293
Annur, H. (2019). Penerapan data mining menentukan strategi penjualan variasi mobil menggunakan metode K-Means clustering. J. Inform. Upgris, 5(1). https://doi.org/10.26877/jiu.v5i1.3091
Astuti, J., & Yuniarti, T. (2023). Data Mining Modeling in Clustering Car Products Sales Data in the Automotive Industry in Indonesia. Jurnal Manajemen Industri Dan Logistik, 7(2), 261–281. https://doi.org/10.30988/jmil.v7i2.1258
Butsianto, S., & Saepudin, N. (2020). Penerapan data mining terhadap minat siswa dalam mata pelajaran matematika dengan metode K-Means. J. Nas. Komputasi dan Teknol. Inf., 3(1), 51–59. https://doi.org/10.32672/jnkti.v3i1.2008
Fatmawati, K., & Windarto, A. P. (2018). Data mining: Penerapan Rapidminer dengan K-Means cluster pada daerah terjangkit demam berdarah dengue (DBD) berdasarkan provinsi. Comput. Eng. Sci. Syst. J., 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661
Ginting, B., & Riandari, F. (2020). Implementasi metode K-Means clustering dalam pengelompokan bibit tanaman kopi arabika. J. Nas. Komputasi dan Teknol. Inf., 3(2).
Govindasamy, K., & Velmurugan, T. (2017). A Study on Classi fi cation and Clustering Data Mining Algorithms based on Students Academic Performance Prediction. International Journal of Control Theory and Applications, 10(23), 147–160.
Handoko, K. (2016). Penerapan data mining dalam meningkatkan mutu pembelajaran pada instansi perguruan tinggi menggunakan metode K-Means clustering (Studi kasus di program studi TKJ Akademi Komunitas Solok Selatan). J. Teknol. dan Sist. Inf., 02(03), 31–40. Retrieved from http://teknosi.fti.unand.id/index.php/teknosi/article/view/70
Hutasoit, M. N., Fa’rifah, R. Y., & Andreswari, R. (2023). Application of Data Mining For Clustering Car Sales Using The K-Means Clustering Algorithm. International Journal of Information System & Technology Akreditasi, 7(2), 118–124.
López-Zambrano, J., Torralbo, J. A. L., & Romero, C. (2021). Early prediction of student learning performance through data mining: A systematic review. Psicothema, 33(3), 456–465. https://doi.org/10.7334/psicothema2021.62
Maulida, L. (2018). Penerapan data mining dalam mengelompokkan kunjungan wisatawan ke objek wisata unggulan di Prov. DKI Jakarta dengan K-Means. JISKA (Jurnal Inform. Sunan Kalijaga), 2(3), 167. https://doi.org/10.14421/jiska.2018.23-06
Metisen, B. M., & Sari, H. L. (2015). Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila. J. Media Infotama, 11(2), 110–118.
Rezaeinejad, I. (2021). Automotive Industry and Its Place in the Economy: Case Study Iran Auto Industry. Management, 5(3), 23–32. https://www.researchgate.net/publication/354677669
Rony, S. (2016). Penerapan data mining menggunakan algoritma K-Means clustering untuk menentukan strategi promosi mahasiswa baru (Studi kasus: Politeknik LP3I Jakarta). J. Lentera ICT, 3(1), 76–92.
Setiyani, L., & dkk. (2020). Analisis prediksi kelulusan mahasiswa tepat waktu menggunakan metode data mining Naïve Bayes: Systematic review. Fakt. Exacta, 13(1), 38–47. https://doi.org/10.30998/faktorexacta.v13i1.5548
Silalahi, R. E., & dkk. (2019). Penerapan data mining dalam menentukan penerima bantuan sosial dengan algoritma C4.5 pada kantor kecamatan Siantar Selatan. J. Sist. Inf. Ilmu Komput. Prima (JUSIKOM PRIMA), 1, 452–460.
Tamba, S. P., & dkk. (2019). Penerapan data mining untuk menentukan penjualan sparepart Toyota dengan metode K-Means clustering. J. Sist. Inf. Ilmu Komput. Prima (JUSIKOM PRIMA), 2(2), 67–72.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Antonia Desya, Dimas Ilham Pratama, Muchammad Vico Airlangga, Andi Diah Kuswanto (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.